Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(6-Oxido-2-oxo-1,2-dihydro-pyrimidine-5-carboxylato- $\left.\kappa^{2} O^{5}, O^{6}\right)$ -bis[2-(2-pyridyl)-1H-benzimidazole$\left.\kappa^{2} N^{2}, N^{3}\right]$ manganese(II) monohydrate

Cheng-Bing Ma, Hui Chen, Ming-Qiang Hu and Chang-Neng Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: ccn@fjirsm.ac.cn

Received 13 December 2010
Accepted 20 January 2011
Online 27 January 2011
In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Mn}^{\mathrm{II}}$ centre is surrounded by three bidentate chelating ligands, namely, one 6-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate (or uracil-5-carboxylate, Huca^{2-}) ligand $[\mathrm{Mn}-\mathrm{O}=$ 2.136 (2) and 2.156 (3) \AA] and two 2-(2-pyridyl)-1 H -benzimidazole (Hpybim) ligands $[\mathrm{Mn}-\mathrm{N}=2.213$ (3) -2.331 (3) \AA] , and it displays a severely distorted octahedral geometry, with cis angles ranging from $73.05(10)$ to $105.77(10)^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds both between the Hpybim and the Huca ${ }^{2-}$ ligands and between the Huca ${ }^{2-}$ ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen-bond donor to form double $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the $\mathrm{Huca}^{2-} \mathrm{O}$ atoms, crosslinking the chains to afford an infinite twodimensional sheet; a third hydrogen bond ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) formed by the water molecule as a hydrogen-bond acceptor and a Hpybim N atom further links these sheets to yield a threedimensional supramolecular framework. Possible partial $\pi-\pi$ stacking interactions involving the Hpybim rings are also observed in the crystal structure.

Comment

Manganese-containing small molecular species have been found to play an important role at the active sites of several redox-based enzymes (Weighardt, 1989). The peripheral ligation around the Mn centre(s) in these enzymes is believed to include both the carboxy and/or phenol hydroxy groups and the imidazole ring from various amino acid residues, affording a predominant N/O coordination sphere (Pecoraro \& Butler, 1986). Simple carboxylate-, phenoxide- and imidazolecontaining molecules are often used in place of the peptide side chains in preparing molecular models of the active sites of these enzymes. Uracil-5-carboxylic acid ($\left.\mathrm{H}_{3} \mathrm{uca}\right)$ (also named

2,4-dihydroxypyrimidine-5-carboxylic acid), which possesses a biologically important pyrimidine heterocycle bearing both one carboxy group and two hydroxy groups, could display diverse coordination modes to metal ions through the carboxy O atoms, the hydroxy O atoms and the pyrimidine N atoms, either independently or simultaneously.

(I)

As part of our study of manganese biochemistry, we have investigated manganese complexation by uracil-5-carboxylic acid. α, α^{\prime}-Diimine molecules strongly favouring bidentate chelation coordination, such as 2,2'-bipyridine and 2-(2-pyridyl)- $1 H$-benzimidazole (Hpybim), are introduced to prevent the formation of uracil-5-carboxylic acid-bridging manganese polymeric complexes, and thus small molecular manganese compounds are expected. In the present work, the reaction of disodium uracil-5-carboxylic acid with manganese acetate in the presence of Hpybim affords pale-yellow crystals of the title compound, (I), which represents a rare example of a mononuclear six-coordinate transition metal complex with mixed ligands including uracil-5-carboxylic acid, though several eight-coordinate lanthanide complexes with a similar mixed-ligand system have been reported recently (Xiong et al., 2008; Sun \& Jin, 2004; Xing et al., 2008; Liu et al., 2009).

Compound (I) consists of one neutral [Mn(Huca)(Hpybim) $)_{2}$] monomer and one solvent water molecule, all in general positions in the asymmetric unit. The $\mathrm{Mn}^{\mathrm{II}}$ atom is surrounded by three bidentate chelating ligands, coordinated via four N atoms ($\mathrm{N} 3, \mathrm{~N} 4, \mathrm{~N} 6$ and N 7) from a pair of neutral Hpybim ligands, and via two O atoms (O1 and O3) from one dianionic Huca ${ }^{2-}$ ligand, as shown in Fig. 1. The complex displays a severely distorted octahedral geometry around the Mn centre (Table 1), in which three N atoms (N4, N6 and N7) of the Hpybim ligands and the phenolate O atom (O3) of the Huca ${ }^{2-}$ ligand define a best octahedral equatorial plane [the mean out-of-plane deviation is 0.027 (5) \AA and the maximum out-of-plane deviation of 0.030 (7) \AA is for atom N7], with the Mn atom displaced from the plane by 0.053 (5) \AA. The pyridyl N atom (N3) of the Hpybim ligand and one carboxylate O atom (O1) of the Huca ${ }^{2-}$ ligand complete the distorted octahedron through coordination in the axial positions, with an $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$ angle of 160.52 (9) ${ }^{\circ}$.

The high-spin $d^{5} \mathrm{Mn}^{2+}$ ion favours the formation of octahedral $d^{2} s p^{3}$ hybrid orbitals, with cis angles of 90°. The rigid chelating Hpybim ligand usually gives a narrow bite of less than 75° at a central Mn atom. The strong distortion from an ideal Mn octahedron in (I), with the cis angles ranging from

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme and 20% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
$73.05(10)$ to $105.77(10)^{\circ}$, is obviously due to the double chelation of the two Hpybim ligands. The average $\mathrm{Mn}-\mathrm{N}$ distance $[2.28(5) \AA$] and the $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ chelate angles [74.34 (11) and $73.05(10)^{\circ}$] are comparable with those observed in the reported pybim-containing monomeric $\mathrm{Mn}^{\mathrm{II}}$ complex $\left[\mathrm{Mn}(\mathrm{ptl})_{2}(\mathrm{Hpybim})\right]$ [ptl is p-toluate; 2.2274 (19) \AA and 74.45 (5) ${ }^{\circ}$, respectively; Ma et al., 2007] and, as expected, the $\mathrm{Mn}-\mathrm{N}$ (imidazole) distances in (I) are shorter than the $\mathrm{Mn}-\mathrm{N}$ (pyridine) distances, since the benzene group in the ortho position enhances the electron density on the imidazole N atom. Two Hpybim ligands are each reasonably planar, with maximum out-of-plane deviations of 0.107 (2) and 0.146 (3) \AA for atoms $\mathrm{H} 14 A$ and $\mathrm{H} 27 A$, respectively. A very small dihedral angle of $4.2(1)^{\circ}$ is observed between the N3-containing Hpybim ligand plane and the chelate plane $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{Mn} 1$. However, the other Hpybim ligand makes a larger dihedral angle $\left[16.9(1)^{\circ}\right]$ with its chelate plane $\mathrm{N} 6 / \mathrm{N} 7 / \mathrm{Mn} 1$.

The Huca ${ }^{2-}$ dianion in (I) acts as a bidentate ligand to chelate to the Mn atom through one carboxylate O atom and the phenolate O atom; the second carboxylate O atom and the carbonyl O atom in the 2-position, as well as the two pyrimidine N atoms, are uncoordinated. Difference-map plots unequivocally located the lone ring H atom as being bonded to N 1 , between atoms O 3 and O 4 . The position of the protonated N atom differs from that found in [Mn (Huca)$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (Chen et al., 2007), where the H atom is clearly established as being bonded to the other ring N atom. The $\mathrm{Mn}-\mathrm{O}$ distances (Table 1) and the $\mathrm{O} 3-\mathrm{Mn}-\mathrm{O} 1$ chelate angle of $84.07(9)^{\circ}$ are comparable to those observed in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{uca}\right)_{2}\right]$ (Maistralis et al., 1991) and $\left[\mathrm{Mn}(\mathrm{Huca})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (Chen et al., 2007). The Huca ${ }^{2-}$ ligand is also reasonably planar, with a maximum out-of-plane deviation of 0.101 (5) \AA for atom O 4 . The ligand plane is folded with respect to the $\mathrm{O} 1 /$ $\mathrm{O} 3 / \mathrm{Mn} 1$ chelate plane, at an angle of $16.0(1)^{\circ}$.

Figure 2
A packing diagram for (I), showing part of the two-dimensional hydrogen-bonded network derived from the crosslinkage of the onedimensional chains hydrogen-bonded via $\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$ and $\mathrm{O} 5-$ H5B \cdots O4. The atom labelled with a plus sign (+) is at the symmetry position $\left(x,-y+\frac{3}{2}, z+\frac{1}{2}\right)$.

As shown in Fig. 2, with details in Table 2, extensive intermolecular hydrogen bonding produces a three-dimensional hydrogen-bonded framework. The uncoordinated imidazole N 8 - H 8 group of the Hpybim ligand donates the H atom to carboxylate atom O1 of the molecule related by the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (see Fig. S1 in the Supplementary material). Similarly, the protonated N1 - H1 group of the Huca ${ }^{2-}$ ligand donates atom H 1 to uncoordinated carbonyl atom O 4 of the molecule related by the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ to yield a one-dimensional chain extending in the c direction (Fig. S2 in the Supplementary material). The lattice water molecule (O5) connects to three $\left[\mathrm{Mn}(\mathrm{Huca})(\mathrm{Hpybim})_{2}\right]$ monomers (Table 2, and Fig. S3 in the Supplementary material), to complete the three-dimensional hydrogen-bonded framework. There are, in addition, two types of partial $\pi-\pi$ stacking interactions between inversion-related pybim ligands. The centroidcentroid separations are 3.705 (3) Å between the N3/C6-C10 rings at (x, y, z) and $(-x, 1-y,-z)$, and 3.797 (3) \AA between the N6/C18-C22 ring at (x, y, z) and the C24-C29 ring at (1-x, $1-y, 1-z$).

Experimental

To a hot water-dimethylformamide (15 ml , ca 2:1 v/v) solution containing uracil-5-carboxylic acid (0.5 mmol), sodium hydroxide (1.0 mmol) and 2-(2-pyridyl)- $1 H$-benzimidazole $(1.0 \mathrm{mmol})$, solid manganese acetate tetrahydrate (0.5 mmol) was added in portions with continuous stirring. The mixture was refluxed for 30 min and then filtered to remove the precipitate. The light-yellow filtrate was allowed to stand undisturbed for approximately one month at room temperature, during which time pale-yellow crystals of (I) suitable for X-ray diffraction analysis were deposited in $\mathrm{ca} 30 \%$ yield. Analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{MnN}_{8} \mathrm{O}_{5}$: C 56.41, H 3.59, N 18.15%; found C 56.50, H 3.51, N 18.24%. FT-IR (KBr, cm^{-1}): 3467 (vs, br), $2022(w)$, 1622 (vs), 1538 (m), 1455 (w), 1441 (w), 1385 (s), 1320 (w), 1300 (s), 1231 (w), 1208 (w), 1183 (w), 1150 (w), 1050 (w), $994(w), 976(w)$, $898(w), 849(w), 811(m), 751(s), 647(s), 582(w), 501(m), 431(w)$, 406 (w).

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=617.49$
Monoclinic, $P 2_{1} / c$
$a=10.915(6) \AA$
$b=15.42(1) \AA$
$c=17.972(12) \AA$
$\beta=115.945(2)^{\circ}$
$V=2720(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.12 \times 0.05 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD diffractometer
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.910, T_{\text {max }}=0.981$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.182$
$S=1.09$
6139 reflections

Table 1
Selected bond lengths (\AA).

Mn1-O3	$2.136(2)$	Mn1-N7	$2.256(3)$
Mn1-O1	$2.156(3)$	Mn1-N3	$2.319(3)$
Mn1-N4	$2.213(3)$	Mn1-N6	$2.331(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.00	2.830 (4)	160
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{O} 5^{\text {ii }}$	0.86	1.89	2.722 (4)	162
$\mathrm{N} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1^{\text {iii }}$	0.86	1.98	2.793 (4)	158
O5-H5A \cdots O2	0.85	1.88	2.675 (4)	154
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 4^{\text {iv }}$	0.85	2.12	2.959 (4)	169

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x-1,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y+1$, $-z+1$; (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3213). Services for accessing these data are described at the back of the journal.

References

Chen, Z., Xing, H. \& Liang, F. (2007). Acta Cryst. C63, m576-m578.
Liu, X., Xing, H., Miao, J., Jia, M. \& Chen, Z. (2009). Acta Cryst. E65, m1224m1225.
Ma, C.-B., Chen, C.-N. \& Liu, Q.-T. (2007). Acta Cryst. C63, m618-m621.
Maistralis, G., Katsaros, N., Mentzafos, D. \& Terzis, A. (1991). Acta Cryst. C47, 740-743.
Pecoraro, V. L. \& Butler, W. M. (1986). Acta Cryst. C42, 1151-1154
Rigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, C.-Y. \& Jin, L.-P. (2004). Polyhedron, 23, 2085-2093.
Weighardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.
Xing, H.-H., Chen, Z.-L. \& Ng, S. W. (2008). Acta Cryst. E64, m419-m420.
Xiong, W., Xing, H., Su, Y. \& Chen, Z. (2008). Acta Cryst. E64, m1166-m1167.

